
Software Quality
17-313 Fall 2024

Foundations of Software Engineering
https://cmu-17313q.github.io

Eduardo Feo Flushing
Sources: 

● Effective Software Testing: A developer's guide. Maurizio Aniche
● Software Quality and Testing - TU Delft
● Introduction to Combinatorial Testing. Rick Kuhn

https://cmu-17313q.github.io/


• P3 is out
• Exam grades released

• You can collect your cheat sheets
• Gradebook is live
• There will be a post-midterm activity with bonus 

points 

Administrivia



Smoking Section

•Last two full rows

6



Learning Goals
• Understand the concepts of software quality and technical 

debt
• Reflect on personal experiences of technical debt
• Learn best practices for proactively ensuring quality
• Learn techniques for creating functional tests 
• Explain the importance of technical debt management
• Learn techniques for managing technical debt



Software Quality



Internal Quality

• Is the code well structured?

• Is the code understandable?

• How well documented?

9

External Quality

• Does the software crash?

• Does it meet the requirements?

• Is the UI well designed?



Testing
Assuring external quality



Terminology

Failure:

“Deviation of the component or system 
from its expected delivery, service or 
result”

“Manifested inability of a system to 
perform required function”



Terminology

Fault / Defect:

“Flaw in component or system that can cause the component or 
system to fail to perform its required function”

“A defect, if encountered during execution, may cause a failure of 
the component or system”



Terminology

Error:

“A human action that produces an incorrect result”



Terminology
Failure:

• Manifested inability of a system to perform 
required function.

Defect (fault):
• missing / incorrect code

Error (mistake)
• human action producing fault

And thus:
• Testing: Attempt to trigger failures
• Debugging: Attempt to find faults given a failure

      Bug



Principles of Testing #1: 
Avoid the absence of defects fallacy

• Testing shows the presence of defects 
• Testing does not show the absence of defects!
• “no test team can achieve 100% defect detection 

effectiveness”

Effective Software Testing: A developer's guide. Maurizio Aniche 



Principles of Testing #2: 
Exhaustive testing is impossible

● A simple function, 1 
input, string, max. 26 
lowercase characters 
+ symbols (@,.,_,-)

● Assume we can use 1 
zettaFLOPS: 1021 

tests per second
Effective Software Testing: A developer's guide. Maurizio Aniche 

All plants dead

All oceans dry All tests done
~8 billion years



Principles of Testing #3:
Start testing early

• To let tests guide design
• To get feedback as early as possible
• To find bugs when they are cheapest to fix
• To find bugs when have caused least damage

Effective Software Testing: A developer's guide. Maurizio Aniche 



Principles of Testing #4:
Defects are usually clustered

• “Hot” components requiring frequent change, bad habits, 
poor developers, tricky logic, business uncertainty, 
innovative, size, …

• Use as heuristic to focus test effort

Effective Software Testing: A developer's guide. Maurizio Aniche 



Principles of Testing #5:
The pesticide paradox
“Every method you use to prevent or find bugs leaves a residue of 

subtler bugs against which those methods are ineffectual.”

• Re-running the same test suite again and again on a 
changing program gives a false sense of security

• Variation in testing

Effective Software Testing: A developer's guide. Maurizio Aniche 



Principles of Testing #6:
Testing is context-dependent

Effective Software Testing: A developer's guide. Maurizio Aniche 



Principles of Testing #7:
Verification is not validation
Verification

• Does the software system meet the 
requirements specifications?

• Are we building the software right?

Validation

• Does the software system meet the 
user's real needs?

• Are we building the right software?

Image Credit: Philip Koopman
Effective Software Testing: A developer's guide. Maurizio Aniche 



How to create tests?



Test design techniques
● Opportunistic/exploratory testing: Add some unit tests, without 

much planning
● Structural testing ("white box"): Derive test cases to cover 

implementation paths
○ Line coverage, branch coverage

● Specification-based testing ("black box"): Derive test cases from 
specifications
○ Boundary value analysis
○ Equivalence classes
○ Combinatorial testing
○ Random testing



Specification Testing

Tests are based on the specification
Advantages:

• Avoids implementation bias
• Robust to changes in the implementation
• Tests don’t require familiarity with the code
• Tests can be developed before the implementation





What about exhaustive testing?

Idea: Try all values!
• age: int  (2 - 117) years
• datetime: DateTime (hh:mm + M/D/Y)
• rideTime: int (in minutes, 1 - 2 Hours)
• is_public_holiday: bool (2 values)

116 x 1440 (minutes per day) x 1826 (days in the next 5 years) 
x 120 (ride time) x 2

~ 72 Billion test cases



What about exhaustive testing?

Exhaustive testing is usually impractical – even for trivially 
small problem
Key problem: choosing test suite

• Small enough to finish in a useful amount of time
• Large enough to provide a useful amount of validation

Alternative: Heuristics



Equivalence Partitioning

• Identify sets with same behavior (equivalence class)
• Try one input from each set
• Equivalence classes derived from specifications (e.g., 

cases, input ranges, error conditions, fault models)
• Requires domain-knowledge



Example: Equivalence Classes?



The category-partition method

• Identify the parameters
• The domains of each parameter

• From the specs
• Not from the specs

• Add constraints (minimize)
• Remove invalid combinations
• Reduce number of exceptional behaviors
• Generate combinations



The category-partition method

Variable Domains

age <2, [2,17], 
[18,65], >65

ride_datetime weekdays peak 
and off-peak, 
weekends peak 
and off-peak
…

ride_duration <5, >=5

is_public_holiday F, T



Boundary-value analysis

Key Insight: Errors often occur at the boundaries of a variable 
value

• For each variable, select:
• minimum, 
• min+1, 
• medium, 
• max-1,
• maximum; 
• possibly also invalid values min-1, max+1



Boundary-value analysis

Variable Domains

age <2, [2,17], 
[18,65], >65

ride_datetime weekdays peak 
and off-peak, 
weekends peak 
and off-peak
…

ride_duration <5, >=5

is_public_holiday F, T



Pairwise testing

Key Insight: some problems only occur as the result of
an interaction between parameters/components

• Examples of interactions:
• The bug occurs for senior citizens traveling on weekends (pairwise 

interaction)
• The bug occurs for senior citizens traveling on weekends during peak 

hours (3-way interaction)
• The bug occurs for adults traveling long trips during public holidays 

that are weekends. (4-way interaction)
• Claim: Considering pairwise interactions finds about 50% 

to 90% of defects



Group Activity:
• Use specification testing to create a test suite for the 
bus_ticket_price example

• Explain the heuristics you use to create your test cases
• BONUS: Test the program and find some bugs!

https://bit.ly/CMU313-activity

Bus Ticket Pricing Rules

● Children under 2 ride for free.
● Children under 18 and senior citizens over 65 pay half the fare.
● All others pay the full fare of $3.
● On weekdays (Monday to Friday), between 7am and 9am and between 4pm and 6pm, a 

peak surcharge of $1.5 is added to the fare.
● During weekends (Saturday and Sunday), there is a flat rate of $2 for all riders, except 

for children under 2 who still ride for free.
● Short trips under 5 minutes during off-peak times are free, except on weekends.
● If the trip occurs on a public holiday, a special holiday surcharge of $2 is added, 

ignoring other surcharges and the weekend flat rate.



When to create and run tests?



The V-Model



Test Driven Development
Tests first!

Popular agile technique

Write tests as specifications before code

Never write code without a failing test

Claims:

• Design approach toward testable design
• Avoid writing unneeded code
• Higher product quality (e.g. better code, 

less defects) 
• Higher test suite quality 
• Higher overall productivity 


